7/6/22    16:30 - 18:30
Well-balanced schemes for hyperbolic systems with source terms  
Minisymposium organized by Christophe Berthon, Manuel J. Castro Díaz and Victor Michel-Dansac
Room: A1 – 3
Chair: Victor Michel-Dansac
CoChair: Manuel Castro
A fully well-balanced scheme for shallow-water equations with Coriolis force
Vivien Desveaux and Alice Masset

Well-balanced semi-implicit Lagrange-projection-type schemes for the one-dimensional shallow water system
Celia Caballero Cárdenas, Manuel J. Castro Díaz, Tomás Morales de Luna and María de la Luz Muñoz Ruiz

Bound-preserving and entropy-stable algebraic flux correction schemes for the shallow water equations with topography
Hennes Hajduk and Dmitri Kuzmin

Well-balanced methods for one-dimensional blood flow model with discontinuous mechanical and geometrical properties
Ernesto Pimentel-García, Carlos Parés, Lucas O. Müller and Eleuterio F. Toro

Modeling and numerical approach of dispersive waves in goephysical flows
Cipriano Escalante and Tomás Morales de Luna

Well-balanced high-order schemes for hyperbolic systems with stiff relaxation
Irene Gómez Bueno, Sebastiano Boscarino, Manuel Jesús Castro, Carlos Parés and Giovanni Russo

Towards entropy–stable finite element moment methods for the Boltzmann equation
Michael Abdelmalik, Irene Gamba, Torsten Kessler and Sergej Rjasanow